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I. INTRODUCTICN

The relationship be*weszn the single particle resonance of
shell model potential and resonances associated with particle
hole states is extremely crucial to a consistent, indeed a
correct, calculation of a ruclear reaction cross section.
In fact, a considerable amount of insight intoc the correctness
or the usefulness of a particular formulation of rTeaction
theory can be gained from the way in which single particle
resonances are handled, particularly when they occur near
thresholds. A resonance associated with any non-zero value
of angular momentum becomes increasinaly narrow if the veso-
nance energy is decreased. Not only does the resonance then
become more difficult experimentally to distinguish from a
"compound nuclear resonance", but appreciable configuration
mixing with discrete shell model states may make this dis-
tinction less meaningful. The single particle-rescnance is
parceled but among mrore complex levels (e.g. two-particles,
one-hole states) in precisely the manner discussed by Lane,
Thomas, and Nignerl). Ne shall learn from our analysis of
a low-lying resonance that in this situaticn the "decorway
state" is a single particle state, or one quasiparticle state.

The considerations of this paper are based on theKEﬁell
model reaction theo;z]outlined in earlier paper52>, and the
results of a specific[&alculatibnkﬁill be presented for the
d3/é resonance in the elastic scattering of neutrons on 016.

For the purpose of testing a reaction theory the situation

which obtains in the nuclei with A = 15,16, and 17 is nearly



ideal and this paper is preliminary to a more extensive sur-

vey of the reactions involving these nuclei.

16(

The d3/2 resonance observed in O n,n)O16 oCcCcurs

at 0.634 MeV with a width of only 90 keV. This width is
approximately what one should expect for a d-wave resonance
produced by the average Hartree field in this nucleus. A

corresponding resonance also occurs in proton scattering

16 . X
on 0°7. Since these resonances arise from the average po-

tential generated by 016, we should also expect to find d3/2

15 15

resonances in the nucleon scattering on O and N"7. In the

simplest shell model these nuclei are described as belonging
to the configuration lpl/z-l, a hole in the lp,/, shell.
Overlooking the distinction between bound and continuum states

for the moment, we could describe the resonance observed in

15 15

nucleon scattering on N and O as "belonging to the con-

figuration pl/2—l d3/2'.
15

Similarly if elastic scattering

15

could be performed on 0 and N in their first excited state

(p -1 in the shell model), resonances would be observed which
3/2
1

d3/5"

Now actually a central potential can cnly describe nucleon

could be described as "belonging to lp3/2—

scattering in the lowest approximation, and therefore even the

. -1 -1 .
continuum states P1/2 d3/2 and P3/o d3/2 are not eigenstates
of the complete Hamiltonian with a real two-body interaction. A
diagonalization of the full Hamiltonian using just these con-
tinuum states will yield eigenstates which are a linear super-

position of these two configurations. Such a calculation is



equivalént to finding the inelastic scattering which is pro-
duced by the two-body interaction by a direct interaction.
The calculation of the nucleon scattering is further
complicated, however, by the fact that discrete bound states
belonging to the configurations pl/2—l de /o) p3/2_l dg /o5
pl/2-l zs, /5, and p3/2-l s, /o also interact strongly with
the resonant continuum states (which have large amplitudes
over the nuclear volume). In the shell model calculations

of the bound and the "resonant states" of 016

a d3/2 state

is included among the particle states from which the particle-
hole states are constructed, Since a bound d3/2 state does
not actually exist in 017, it is clear that such a state is
actually a representative of the d3/2 single particle reso-
nance. The conventional shell model diagonalization can then
be viewed in some sense as an approximate diagonalization of
the full Hamiltonian on the discrete shell model states and

. . 3
on certain resonant continuum states ).

This description of the role of resonant continuum states
is accurate, but it does not readily lend itself to an ac-
curate calculation of the detailed shape of resonances, par-
ticularly when two or more resonances overlap. Therefore we
shall develop another formulation which does provide a basis
for such analyses. The motivation for the development of the
next section is provided by the observation that a slightly
deeper d3/2 potential would provide a bound d3/2 state. This
state would then give discrete states of the configurations

-1 -1 . .
P1/2 d3/2 and P3/2 d3/2. The interaction cf these states




would then easily be found by diagonalizing the Hamiltonian
on this discrete set. We shall now proceed to show how to
remedy the failure of nature tc present us with this simpler

situation.

IT1. RESONANCE THEORY OF SINGLE PARTICLE SCATTERING
We apply the formalism of the shell model reaction

theoryz)

to the analysis of low energy single particle reso-
nance. Let U be a central potential which describes the
elastic scattering and which therefore fits the resonance.

For the purpose of the subsequent analysis we regard the

cross section given by U as exact. The T~ matrix element is

T(k',k) :@E*' | U |‘~’E’+> (1)

where @g' is a plane wave of mementum ?' and xg+ is the
exact scattering wave function for the potential U with out-
going scattered waves at infinity.

Introduce now the potential‘G.which is sufficiently
deeper than U to possess a bound single particle state of the
same quantum numbers as the sharp resonance of U . The energy
of this state will be dencted by E4(= - Ep, the binding energy).

A A
Let H = K + U be the "model Hamiltonian", and use the scattering

A A -
states X * of H to calculate T(k*', k).
Using the equation
A A _
e o= oxg o BT - axg (2)




where
A
U

14

A=U -

we can obtain by operator algebra4)

A Ay A - A+
- opl 01 %D G 11 D@
The “reduced transition operator”<J?Es given by the equation
A .
S= a8+ (E°- 0T (4)

This equation is the starting point for our development of
a resonance theory of single particle scattering.

Since the potential G will not have a resonance at low
energy,é;'is the quantity which introduces a resonance into
the scattering amplitude. This resonance can be exhibited
ekplipitly by separatingcfuinto a non-resonant "effective
interaction"-;Land a resonant term of the Breit-Wigner form.
Thegj;is defined by the equation

4 A 4

J=a+a (B -0t T (5)

where P_ projects on the continuum states of H. From Egs. (4)

and (5) it follows that

.
™ (6)

where Pd pro;ects on the discrete bound state of H which

A
I = ../+de (% -H-de’Pd) lp

corresponds to the narrow resonance of H. The T-matrix

amplitude is then given by

T (®,K) = Sop! |U|xk> <x 7 )?{>
(X-* |7 DLd T | ) (7)

E-E, -S +1i _g
d 2
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The denominator of the resonance term is defined by

4
S - iry/s ?é|f|d> (8)

with S being called the level shift and T4 being the level
width of the state. Both S and rq are dependent upon the
energy of the incident nucleon, but at resonance Ed + S(ER)=ER’
the resonance energy, and Fd(ER) is the width of the single
particle resonance.

The effective interaction, which determines the resonance
energy and width througdeq. (9), is itself non-resonant. In
a lowest approximation<§7as just equal to A, the perturbation
which pushes the bound state of H into the continuum i?d mixes
it with the continuum levels of H. The deviation of<” from A
arises from virtual transitions into continuum states with a
consequent modification of the perturbing interaction. The

A
optical theorem for <

7 4 N 1
Im</ = - w7 P » (" - H)pCJ"Jr (2)
leads to the familiar expression for Ty
4 N
+ 2
ry(E) = 27 |Kdl] x(ED |%p(E) (10)

As should be anticipated from this view of matters, there

is a simple relation between S and T4 This is easily found
-1
by writing the explicit equation for <7~

4
~_ + -1
</ = A+ A PC(E P_H PC) P.A . (11)

Find the states wf(E) which diagonalize P H P_, i.e.




KYEDPHP V() = E n(E-ET) (12)

and use these to deduce from Eq. (8)

rg(8) = 27 1{d | aly (B> 1%p(E) (13)
s (£) =@laldp+ (2v)'107ﬁE' ]E;i(;i-) (14)

The second of these two equations leads to an extremely simple
way of calculating the energy dependent level shift to second

order in A.

J1I. NUMERICAL EXAMPLE

This approach was used to describe the d3/2 resonance
at 0.934 MeV in elastic neutron scattering 016. For simplicity
U was chosen to be a square well whose depth and radius were
chosen to fit the resonance energy and the width at half max-
imum respectively. The well G was also chosen as a square
well, and with the same radius as U, The depth of 6, however,
was chosen to give a bound state whose energy was véried from
Ed = 0 to Ed = - 10 MeV as a check on the sensitivity of the
calculation to the choice of Eq- The results were found to be
very insensitive to this quantity and we quote only the results
for the calculation with Ed = - 0.1 MeV.

After determining U and G, we first calculated the
resonance energy Ep = E4 +S and P(ER) in the lowest approxi-
mation for v;E A. The resonance energy ER(l) was found to be
ER = 1.009 MeV and width at resonance was approximately

100 keV. Since Pd(l)(E) is a function of energy from which the




second order correction to the level shift is calculated, its
dependence on E was calculated for the range O<E<50 MeV and
is shown in Fig. (2).

The energy shift was then calculated to second order

using the equation

(2) (1)
s =+ @0t Ple v, )
— (15)
E-E'
Since the second order correcticn given by the last term of
this equation is a function of energy, we plot it in Fig. (3).
Notice that it is very small and is smoothly varying through

(2)

the resonance region around 1 MeV. The dependence of S

(2)

on the energy, however, means that the resonance energy ER

must be found by solving the equation

B, 2) - E

2
R J ( ))=o. (16)

The resonance energy is found to be ER(Q) = 0.937 MeV. Within
the accuracy of our calculation this is the exact resonance
energy.

The width is much more difficult to calculate to second
order in A. Therefore we adopted another method of eifimating
the effect upon Ty of the second order correction to</ . Make

the approximation

A

J7= 04 (17)
where 6 is a constant whose magnitude is fixed by the exact

Tesonance energy.



Ep = 0.934 MeV = E, + 6<d[A]d> (18)

The width is then calculated with this approximation to
and is found to be 90 keV at resonance.

The scattering cross section is proportional to sin253/2.
As a further check on the intermediate state representation
of the resonance cross section, the quantity sin253/2 was
calculated from Eq. (7) using Eq *+ S = 0.934 MeV and
Pd(E)=2v]<<6] 9Af&+:>l2p(E) for all energies. The result
agreed with the exact calculation of sin2&3/2 to better than
1% except where the cross section was small or rapidly varying.
Maximum errors of 3% at such places are obviously a consequence
of the crude approximations used in evaluating the resonance

amplitude.

IV. SUMMARY

The significance of our work is that we have shown that
narrow, single-particle resonances are easily treated by in-
troducing a bound state which plays the role of an intermediate
state in a Breit-Wigner resonance amplitude. The resonance
energy and the width of the state are determined by a one-
body effective interaction which is non-resonant. Z?;is means
that the d3/2 resonance observed in nucleon scattering on 016
can be incorporated into the shell model by introducing a d3/2
bound state, which is then treated on the same footing as the

other bound single-particle states. In O16 this d3/2 state

can be combined with the 1;33/2-l hole states in the same way as
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are the ld5/2 and 251/2 bound states. The shell model diag-
onalization which is to be carried out with a particle-hole
interaction will then include in a relatively simple way the
effect of configuration interaction between all the resonant
continuum states (associated with the d3/2 single-particle
resonance) and the bound states.

The only essential modification required of the particle-

hole treatment of O16

is the addition of the one-body inter-
action in the ld3/2 state. In the shell mddel diagonalization
whichk leads to the resonant energies and the compound states
the only effect of this additional interaction is to "restore"

the d3/2 single particle energy to the position of the reso-

nance observed in 017. The shell model calculation is then
of same form as that of Elliot and Flowers?)G. E. Browésgnd
others?)

In the calculation of particle widths for the states of

olé

the one-body interaction in the d3/2 state 1s a direct
consequence of the fact that this state is not bound. Con-
sequently, even in the absence of a particle-hole interaction

the 24.3 MeV state of O16

, which belongs mostly to p3/il L
would decay. This contribution to the particle width of the
compound states is properly included by the procedure of this
paper.

Finally, we wish to point out that the d3/2 intermediate
state introduced to describe the scattering resonance in 017

is properly regarded as a "doorway state" although this violates

the common conception of such states. Such states are commonly
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thought of as being states which differ from the initial state

by the excitation of a nucleon. In current parlance--"doorway

states" differ by two-quasi particles from the initial state.

More properly, however, a doorway state should be regarded as

merely a resonant configuration which is directly coupled to

the incident channel énd also to more complex excitations of

the compound system. The d3/2 state clearly meets this criterion.
The application of this formalism to a complete analysis

16

of the states of O is being carried out and will be reported

in another paper.
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Figure 1.

- Figure 2.

Figure 3.

.Figure Captions

The potential U provides the resonant dy/,
scattering crdss section uhicﬁ is regarded
as exact. The potentiai G possesses the
boﬁnd d3/2 state whose displacement by the
perturbation A = U-ﬁ gives rise to the scat-

tering resonance of U.

3Pe width functioh rd(l) caléulated with
T= A

The second order correction to the energy

of the intermediate state [c.f.Eq. (14)]

is given as a function of the energy of the
3

incident nucleon.
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Figure 1
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